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The first-order p~rturbation method is applied to a rapid estimation of heats of mixing of binary 
liquid mixtures containing molecules with a negligible polarity and approximately spherical 
symmetry. The calculation is based on the approximate perturbation expansion of the Helm­
holtz free energy up to first order and requires the knowledge of the radial distribution function 
of the hard-sp1!ere reference system at the contact point. Generalized relations are used for 
estimating the molecular parameters. The calculated values are compared with experimental 
data on six mixtures. Good qualitative agreement was achieved in all cases investigated. 

In our earlier paper! we have derived a simple relation which enables a relatively 
accurate prediction of heats of vaporization of pure components formed by nonpolar 
and approximately spherically symmetrical molecules. 

In this work we consider a possibility of using a simple perturbation variant for 
calculating enthalpic functions of liquid mixtures of nonpolar components. This 
calculation starts from a simplified statistical-thermodynamics model and requires 
only the knowledge of commonly available physical constants of pure components 
such as density and critical data. Commonly employed combination rules are also 
employed for parameters describing the molecular interaction of different compo­
nents. 

THEORETICAL 

First-order perturbation methods 2
•
3 can also be applied to multicomponent systems. 

Most often these methods employ properties of the reference system of additive hard 
spheres, for which it holds dkl = (dkk + dll)!2. If a simple square-well potential 
uld(r), which depends only on the intermolecular distance r as 

Ukl(r) = +00, r;;;; O"kl, 

ukl(r) = -Ski' for O"kl < r ;;;; YklO"kl, (1) 
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is used for representing the intennolecular forces acting between particles k and 1, 
the total potential interaction energy Wof a system containing s components can be 
divided into reference, Wo, and perturbation, WP, terms 

W = I I u .. i 1'ij ) = Wo + WP , (2) 
k.l= 1 i<j 

so that the tenn Wo is the energy of the reference mixture of hard spheres with dia­
meters dk! = Uk! and the perturbation term includes only attractive forces. The pair 
perturbation potential is defined through the relations ukl(1') = ukl(1') for l' > UleI' 

ukl(1') = ° for r ;:;:; Ukl' 

The perturbation contribution to the internal energy, !lUrn = Urn - UOm ' where 
U Om is the internal energy of the reference hard-sphere mixture at the same conditions, 
can be approximated, after neglecting the higher-order terms, by the following 
relation2 

(3) 

where Xk are mole fractions of components in the mixture, Nis' Avogadro's constant, 
n = N/V is the number density, V is the molar volume of the mixture and g~I(1') 
denotes the radial distribution functions in the mixture of additive hard spheres. 
In the derivation of this relaHon we made use of the fact that the hard-sphere diameter 
does not depend on temperature in our simple perturbation variant. 

Similarly as in our preceding paper!, which had been dealing with the calculation --' 
of heats of vaporization of pure components, each of the radial distribution functions 
was approximated by two linear sections. The slope of the first straight line is deter­
mined by the value of g~l( = U kl),. = g~1 at the contact point of hard spheres, which 
depends on the number density n = N/V and composition X k (k = 1, ... , s - 1), 
and by g~1 (1' = AklUkl) = 1. The quantity Akl represents an average over a narrow 
range of intermolecular distances (r/ukIE (1'20,1'35»), for which it holds g~l(r) = 1. 
In agreement with the preceding paper1, the value of Akl was set equal to Akl = A = 

= 1'275. For r > AUk!> the reference radial distribution function was approximated 
by a constant g~l(r > AUkl) = 1. 

For the radial distribution function in the hard-sphere mixture at the contact 
point, we employed the Carnahan-Starling approximation4

, which des.cribes the 
behaviour of hard spheres better than expressions derived from the compressibility 5 

or virial6 Percus-Yevick solutions. The approximation used can be expressed in the 
form 

kl kl(d) 1 3dkkd II (~ 
grn = go kl = 1 _ (3 + ~ (1 _ ~3)2 + 
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(4) 

where 11k = i 1t1l k , 11k is the number density of component k, 11k = xkN/V. and X k 

is its mole fraction. The diameters of hard spheres , dkb are in our case identical with 
the parameters O"kl of the potential employed. 

By inserting the approximations described into relation (2), we obtain the following 
expression for the perturbation contribution to the Helmholtz free energy of a binary 
mixture 

2 

AUm = -i1tNI1 I xkXlekI0"~1[4Y~1 + l ' 973g~I(I1, X k) - 5'974J, (5) 
k , I=! 

in which the function g~I(I1, Xk) defined through relation (4) depends on the density 11 

and composition X k (the unit of energy for AUm is determined by the choice of the 
unit for ekl> the volume unit of the density n = N/Vmust be identical with the unit 
for O"kl)' 

Since the internal energy of the reference system (Uo = 3/2NkT, k is Boltzmann's 
constant) is independent of volume, the expression RT - AU m is the heat of vapori­
zation into an ideal gas state at constant composition and p~essure (if the liquid phase 
volume is neglected in comparison with the vapour phase). Since, at pressures 
p < 1 atm, the vapour phase behaves almost ideally, we can write 

AHvap = RT - AUm • (6) 

The same assumptions combined with an analogous expression for AU of pure 
components! lead to the following relation for the excess enthalpy AHE 

(7) 

where AU 1 and AU 2 are the perturbation contributions to the internal energy of pure 
components. The last three equations can be evaluated only if the molar volume of the 
mixture is known. In our simple variant, the effect due to the volume change during 
mixing was neglected. 

For a successful application of the variant proposed, the best possible description 
of the intermolecular interaction through the simple square-well potential is requi­
red - an appropriate method must be used for the choice of the parameters ekl> O"kl 

and Ykl' Values of ekk and O"kk were obtained from critical data by generalized esti­
mation relations 7 ,8. The method employed for determining the parameter Ykk includes 
to a certain extent a correction for the realistic course of the intermolecular potential, 
since the value of Ykk was obtained by comparing the expression for the second vi rial 
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{;oefficient in a system of particles obeying the square-well potential with the value 
of this coefficient for the Lennard-Jones potential9 with the same parameters Bkk 

and U kk ' i.e., 

(8) 

where L1 = exp (Bkk/kT) - 1, B or bo is the second vi rial coefficient in the real or 
hard - sphere system, resp. 

The parameters Bkl> Ukl and hi' which describe the interaction between different 
molecules, were approximated by the simplest and most often used combination 
rules lo

, which are in accordance with the additivity in the reference hard - sphere 
system. 

RESULTS AND DISCUSSION 

Bkl = y'( BkkBll) , 

Ukl = (Ukk + ull)/2, 

I'kl = (I'kk + 1'1l)/2 . 

(9) 

Calculated and experimental values of the heat of mixing - AH~alc and AH;xp -
in six binary liquid mixtures at different molar ratios are mutually compared in 
Table I. The choice of the testing mixtures was limited not only by requirements on 
spherical symmetry and a minimal polarity of their molecules , but also by the possi­
bility of a comparison with experimental data 11. The temperatures were also selected 
according to this criterion. 

The agreement is worse than in the case of heats of vaporization1 . However, we 
must realize that the values of AHE calculated by this variant represent small diffe­
ranees between large numbers. Nevertheless, in comparison with more exact theo­
ries 12 

-14, our results cannot be denoted as unsatisfactory. (A comparable quality 
between our results and those following from the more exact theories of liquids has 
been achieved mainly by the fact that our variant uses an experimental value of densi­
ty, whereas in a complete perturbation solution this value is calculated.) The agree­
ment for the CCI4-C7H s and CCI4-CH2CI2 systems can be considered as satis­
factory even from a quantitative point of view, in other cases the agreement is only 
qualitative. Owing to a small absolute value of AHE (approximately by two orders 
lower than AHvap), this simplified method cannot be expected to produce better 
results. 

The fact, that deviations between experimental data and AH;alc are for some mix­
tures large and positive whereas for others they are negative, indicates that main 
inaccuracies in our calculation are not due to the approximation used for the radial 
distribution 'function (even though the effect of an unequal accuracy in the approxi­
mation of its course at different densities manifests itself to a certain extent also here), 
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but that the results are affected by other factors, especially by an insufficient approxi­
mation ofthe intermolecular forces. (This fact can be documented e.g. on the beha­
viour of systems containing CHCI 3 . Theoretical values possess always a correet 
sign, but the absolute values are always considerably lower. Results of these calcula­
tions are not included in Table I.) 

Further, due to low values of t:.HE, our results are considerably affected by the 
neglect of the excess volume t:. VE, because relation (5) depends on density and, in 
contrast to several other theories, this neglect of t:. VE is not mutually compensated 
in the resulting expression containing several terms of opposite signs. This effect 
cannot be specified more quantitatively owing to the lack of suitable experimental 
data on t:.VE. 

The effect of other approximations is essentially identical with that described and 
discussed in our preceding workl. 

In the calculation of t:.HE we must also consider the effect of combination rules 
employed for parameters ekb Ukl and hi (relation (9)), since these relations are so far 
to a large extent of an empirical nature. The use of the linear combination rule for 
Ukl follows readily from the use of the additive hard-sphere system as a reference. 
The same method as in the case of pure components could be used for determining 
the parameter hi - the description of the cross interaction should be somewhat 
better with this parameter. However, with respect to other crude approximations, 
we employed the simpler rule (9). Besides that, the analogous method for determining 
'l'kk depends already on combination rules for ekl and Ukl' If no specific interactions 
between molecules of different components are assumed, we can expect that the com­
monly employed geometric mean rule for ekl will yield a relatively good estimate. 

TABLE I 

The Comparison between Calculated Heats of Mixing (J. mol-I) and Experimental Dataa 

Mixture T,K Xl JiH;.lc JiH~xp ab 

SiClil)-CCI4(2) 293·35 0·921 99·90 56·07 0·78 
SiCI4(I)-TiCli2) 293·35 0·273 197'12 151 ·88 0·30 
SiCI4(I )-C6 HI z(2) 293·15 0·550 302·72 251·06 0'41 
CCI4(I)-C7Hg(2) 303·15 0'330 42·72 36·82 0·16 
CCI4(J)-C6 H 6(2) 288·15 0·430 53 ·90 95·69 -0-44 
CCI4(I)-CH2 CI 2(2) 297·85 0·490 638·45 589·94 0·08 
Ar(I)-Kr(2) 115·8 0·500 -62C) 

(J Values of JiH;xp taken from ref.ll; b a = (JiH;. lc - JiH;xp)!JiH;xp; C Results of calculations 
from the literature: Monte-Carlo - 34 ± 40 (ref. IS), - 29 (ref. l6), -18 (ref. l 7); the perturbation 
theory -54 (ref. 13), -42 (ref.ll ), -10 (ref. l9); the van der Waals theory -50 (ref.13). 
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To eliminate the uncertainty introduced into our calculations by the approximations 
used for real molecular interactions (the assumed course of the realistic potential, 
the use of generalized relations for determining parameters in this potential, the choice 
of combination rules, etc ,), we have performed a comparison with pseudo experimental 
Monte-Carlo data 15

-
17 (which correspond with the behaviour of an Ar-Kr system). 

This comparison is together with the other data given in Table I. The resulting agree­
ment is satisfactory. 

We can summarize our results by stating that even though the simplified per­
turbation variant applied to the calculation of heats of mixing of nonpolar liquids 
yields a worse agreement than in the case of heats of vaporization 1, the results 
obtained give a reasonable qualitative agreement. This is a valuable result especially 
because of the fact that direct calorimetric data at different temperatures and com­
positions are scarce and , on the other hand, data calculated from vapour-liquid 
equilibria are obtained rather laboriously and the error corresponding to the compu­
tation method employed lies in many cases b~tween ± 25 and 30%. Our method 
of calculation requires only the knowledge of common characteristics of pure com­
ponents, i.e., density and critical data. 
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