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The first-order pzrturbation method is applied to a rapid estimation of heats of mixing of binary
liquid mixtures containing molecules with a negligible polarity and approximately spherical
symmetry. The calculation is based on the approximate perturbation expansion of the Helm-
holtz free energy up to first order and requires the knowledge of the radial distribution function
of the hard-sphere reference system at the contact point. Generalized relations are used for
estimating the molecular parameters. The calculated values are compared with experimental
data on six mixtures. Good qualitative agreement was achieved in all cases investigated.

In our earlier paper! we have derived a simple relation which enables a relatively
accurate prediction of heats of vaporization of pure components formed by nonpolar
and approximately spherically symmetrical molecules.

In this work we consider a possibility of using a simple perturbation variant for
calculating enthalpic functions of liquid mixtures of nonpolar components. This
calculation starts from a simplified statistical-thermodynamics model and requires
only the knowledge of commonly available physical constants of pure components
such as density and critical data. Commonly employed combination rules are also
employed for parameters describing the molecular interaction of different compo-
nents.

THEORETICAL

First-order perturbation methods?*® can also be applied to multicomponent systems.
Most often these methods employ properties of the reference system of additive hard
spheres, for which it holds dy; = (dyy + dy)/2. If a simple square-well potential
uk,(r), which depends only on the intermolecular distance r as

“kl(")z +o, rs oy,
: ug(r) = —eq, for oy <r=yy0n, (n
u(r) = 0, r> Va0,
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is used for representing the intermolecular forces acting between particles k and I,
the total potential interaction energy W of a system containing s components can bz
divided into reference, W, and perturbation, WP?, terms

W= % 3 ury) =W + W?, )

k,11=1i<j

so that the term W, is the energy of the reference mixture of hard spheres with dia-
meters d,, = o), and the perturbation term includes only attractive forces. The pair
perturbation potential is defined through the relations uf,(r) = u,(r) for r > oy,
ufy(r) = 0for r £ oy

The perturbation contribution to the internal energy, AU, = U,, — Uy, Where
U is the internal energy of the reference hard-sphere mixture at the same conditions,
can be approximated, after neglecting the higher-order terms, by the following
relation?

s ©
AU, = 2nNn ) kal,[ uby(r) g&'(r) r2 dr, 3
k,I=1 0

where x, are mole fractions of components in the mixture, Nis Avogadro’s constant,
n = N|V is the number density, V is the molar volume of the mixture and g§'(r)
denotes the radial distribution functions in the mixture of additive hard spheres.
In the derivation of this relation we made use of the fact that the hard-sphere diameter
does not depend on temperature in our simple perturbation variant.

Similarly as in our preceding paper’, which had bsen dealing with the calculation
of heats of vaporization of pure components, each of the radial distribution functions
was approximated by two linear sections. The slope of the first straight line is deter-
mined by the value of g§'( = o,,)r = gk! at the contact point of hard spheres, which
depends on the number density n = NV and composition x, (k =1,...,s — 1),
and by g&' (r = A04) = 1. The quantity A,, represents an average over a narrow
range of intermolecular distances (r/oy,€ (1-20, 1-35)), for which it holds g'gl(r) = 1.
In agreement with the preceding paper’, the value of A, was set equal to A = 1 =
= 1-275. For r > Aoy, the reference radial distribution function was approximated
by a constant g§'(r > io,;) = 1.

For the radial distribution function in the hard-sphere mixture at the contact
point, we employed the Carnahan-Starling approximation®*, which describes the
behaviour of hard spheres better than expressions derived from the compressibility®
or virial® Percus-Yevick solutions. The approximation used can be expressed in the
form

1 + 3dkkdll 5%

k1 k1,
m = dy) =
om =0 () = T ey
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1 /dydiy\? §§ v : i
Ty ) R 4
2( dkl (1 _ 52)3 XZ,I Tklxk ( )

where n, = &nn,, n, is the number density of component k, n, = ka/V, and x,
is its mole fraction. The diameters of hard spheres, dy,, are in our case identical with
the parameters oy, of the potential employed.

By inserting the approximations described into relation (2), we obtain the following
expression for the perturbation contribution to the Helmholiz free energy of a binary
mixture

2
AU, = —4nNn Y xxeaom[4rm + 19735 (n, x,) — 5974] , ¥)
k,I=1

in which the function g&/(n, x,) defined through relation (4) depends on the density n
and composition x, (the unit of energy for AU,, is determined by the choice of the
unit for ¢, the volume unit of the density n = N[V must bz identical with the unit
for o).

Since the internal energy of the reference system (U, = 3/2NKT, k is Boltzmann’s
constant) is independent of volume, the expression RT — AU, is the heat of vapori-
zation into an ideal gas state at constant composition and pressure (if the liquid phase
volume is neglected in comparison with the vapour phase). Since, at pressures
p < 1atm, the vapour phase behaves almost ideally, we can write

AH,,, = RT — AU,,. (6)

vap
The same assumptions combined with an analogous expression for AU of pure
components’ lead to the following relation for the excess enthalpy AHE

AH® ~ AU® = AU, — x, AU, — x, AU, , )

where AU, and AU, are the perturbation contributions to the internal energy of pure
components. The last three equations can be evaluated only if the molar volume of the
mixture is known. In our simple variant, the effect due to the volume change during
mixing was neglected.

For a successful application of the variant proposed, the best possible description
of the intermolecular interaction through the simple square-well potential is requi-
red — an appropriate method must be used for the choice of the parameters &y, gy,
and y,;. Values of g, and g, were obtained from critical data by generalized esti-
mation relations’*®. The method employed for determining the parameter yy, includes
to a certain extent a correction for the realistic course of the intermolecular potential,
since the value of y,, was obtained by comparing the expression for the second virial
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coefficient in a system of particles obeying the square-well potential with the value
of this coefficient for the Lennard-Jones potential® with the same parameters g,
and oy, i.e.,

Ve = (1 = Blbo + 4)/4, ®)

where 4 = exp (e/kT) — 1, B or b, is the second virial coefficient in the real or
hard — sphere system, resp.

The parameters ¢, o,; and y,,, which describe the interaction between different
molecules, were approximated by the simplest and most often used combination
rules*®, which are in accordance with the additivity in the reference hard — sphere
system.

& = \/(8kk51|) s
o = (ow + 0'(1)/2 , Q)
Y = (e + Y02

RESULTS AND DISCUSSION

Calculated and experimental values of the heat of mixing — AHL, and AHL,, —
in six binary liquid mixtures at different molar ratios are mutually compared in
Table I. The choice of the testing mixtures was limited not only by requirements on
spherical symmetry and a minimal polarity of their molecules, but also by the possi-
bility of a comparison with experimental data!*. The temperatures were also selected
according to this criterion.

The agreement is worse than in the case of heats of vaporization'. However, we

must realize that the values of AH® calculated by this variant represent small diffe-
rances between large numbers. Nevertheless, in comparison with more exact theo-
ries!27 4, our results cannot be denoted as unsatisfactory. (A comparable quality
between our results and those following from the more exact theories of liquids has
been achieved mainly by the fact that our variant uses an experimental value of densi-
ty, whereas in a complete perturbation solution this value is calculated.) The agree-
ment for the CCl,-C;Hg and CCl,-CH,Cl, systems can bz considered as satis-
factory even from a quantitative point of view, in other cases the agreement is only
qualitative. Owing to a small absolute value of AH® (approximately by two orders
lower than AH,,.), this simplified method cannot be expected to produce better
results.

The fact, that deviations between experimental data and AHE,, are for some mix-
tures large and positive whereas for others they are negative, indicates that main
inaccuracies in our calculation are not due to the approximation used for the radial
distribution function (even though the effect of an unequal accuracy in the approxi-
mation of its course at different densities manifests itself to a certain extent also here),
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but that the results are affected by other factors, especially by an insufficient approxi-
mation of the intermolecular forces. (This fact can be documented e.g. on the beha-
viour of systems containing CHCIl;. Theoretical values possess always a correet
sign, but the absolute values are always considerably lower. Results of these calcula-
tions are not included in Table I.)

Further, due to low values of AHE, our results are considerably affected by the
neglect of the excess volume AVE, because relation (5) depends on density and, in
contrast to several other theories, this neglect of AVE is not mutually compensated
in the resulting expression containing several terms of opposite signs. This effect
cannot be specified more quantitatively owing to the lack of suitable experimental
data on AVE,

The effect of other approximations is essentially identical with that described and
discussed in our preceding work®.

In the calculation of AH® we must also consider the effect of combination rules
employed for parameters &, o,; and ¥y, (relation (9)), since these relations are so far
to a large extent of an empirical nature. The use of the linear combination rule for
oy, follows readily from the use of the additive hard-sphere system as a reference.
The same method as in the case of pure components could be used for determining
the parameter y,; — the description of the cross interaction should be somewhat
better with this parameter. However, with respect to other crude approximations,
we employed the simpler rule (9) Besides that, the analogous method for determining
7k depends already on combination rules for &, and ay,. If no specific interactions
between molecules of different components are assumed, we can expect that the com-
monly employed geometric mean rule for g, will yield a relatively good estimate.

TasLE ]
The Comparison between Calculated Heats of Mixing (J . mol'l) and Experimental Data®

Mixture T,K X AHE,. AHE, 5°
SiCl,(1)-CCl,(2) 29335 0-921 99:90 5607 0-78
SiCl,(1)-TiCl,(2) 29335 0273 19712 151-88 0-30
SiCl,(1)-CgHy2(2) 29315 0-550 30272 25106 0-41
CCl,(1)-C,Hg(2) 30315 0-330 4272 3682 0-16
CCl4(1)-CHe(2) 288:15  0-430 5390 9569 —0-44
CCI4(J)-CH2C12(2) 297-85 0-490 638:45 58994 0-08
Ar(1)-Kr(2) 115-8 0500 —62°) - -

“ Values clfAHeE,‘P taken from ref.!!; ¥ = (AHE,. — AHf,p)/AH,_.E,p; € Results of calculations
from the literature: Monte-Carlo — 34 4+ 40 (ref.ls), —29 (ref.lé), —18 (ref.”); the perturbation
theory — 54 (ref.!3), —42 (ref.1!), —10 (ref.w); the van der Waals theory — 50 (ref.*?).
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To eliminate the uncertainty introduced into our calculations by the approximations
used for real molecular interactions (the assumed course of the realistic potential,
the use of generalized relations for determining parameters in this potential, the choice
of combination rules, etc.), we have performed a comparison with pseudoexperimental
Monte-Carlo data'®>~'7 (which correspond with the behaviour of an Ar-Kr system).
This comparison is together with the other data given in Table I. The resulting agree-
ment is satisfactory.

We can summarize our results by stating that even though the simplified per-
turbation variant applied to the calculation of heats of mixing of nonpolar liquids
yields a worse agreement than in the case of heats of vaporization!, the results
obtained give a reasonable qualitative agreement. This is a valuable result especially
because of the fact that direct calorimetric data at different temperatures and com-
positions are scarce and, on the other hand, data calculated from vapour-liquid
equilibria are obtained rather laboriously and the error corresponding to the compu-
tation method employed lies in many cases bstween +25 and 30%;. Our method
of calculation requires only the knowledge of common characteristics of pure com-
ponents, i.e., density and critical data.
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